Symmetric Alternating Direction Method with Indefinite Proximal Regularization for Linearly Constrained Convex Optimization
Bin Gao () and
Feng Ma ()
Additional contact information
Bin Gao: Southeast University
Feng Ma: High-Tech Institute of Xi’an
Journal of Optimization Theory and Applications, 2018, vol. 176, issue 1, No 10, 178-204
Abstract:
Abstract The proximal alternating direction method of multipliers is a popular and useful method for linearly constrained, separable convex problems, especially for the linearized case. In the literature, convergence of the proximal alternating direction method has been established under the assumption that the proximal regularization matrix is positive semi-definite. Recently, it was shown that the regularizing proximal term in the proximal alternating direction method of multipliers does not necessarily have to be positive semi-definite, without any additional assumptions. However, it remains unknown as to whether the indefinite setting is valid for the proximal version of the symmetric alternating direction method of multipliers. In this paper, we confirm that the symmetric alternating direction method of multipliers can also be regularized with an indefinite proximal term. We theoretically prove the global convergence of the indefinite method and establish its worst-case convergence rate in an ergodic sense. In addition, the generalized alternating direction method of multipliers proposed by Eckstein and Bertsekas is a special case in our discussion. Finally, we demonstrate the performance improvements achieved when using the indefinite proximal term through experimental results.
Keywords: Convex programming; Alternating direction method of multipliers; Proximal term; Indefinite; Iteration complexity; 65K10; 90C25; 90C30 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-017-1207-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:176:y:2018:i:1:d:10.1007_s10957-017-1207-z
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-017-1207-z
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().