A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions II: Extended Exactness
M. V. Dolgopolik ()
Additional contact information
M. V. Dolgopolik: Saint Petersburg State University
Journal of Optimization Theory and Applications, 2018, vol. 176, issue 3, No 12, 745-762
Abstract:
Abstract In the second part of our study, we introduce the concept of global extended exactness of penalty and augmented Lagrangian functions, and derive the localization principle in the extended form. The main idea behind the extended exactness consists in an extension of the original constrained optimization problem by adding some extra variables, and then construction of a penalty/augmented Lagrangian function for the extended problem. This approach allows one to design extended penalty/augmented Lagrangian functions having some useful properties (such as smoothness), which their counterparts for the original problem might not possess. In turn, the global exactness of such extended merit functions can be easily proved with the use of the localization principle presented in this paper, which reduces the study of global exactness to a local analysis of a merit function based on sufficient optimality conditions and constraint qualifications. We utilize the localization principle in order to obtain simple necessary and sufficient conditions for the global exactness of the extended penalty function introduced by Huyer and Neumaier, and in order to construct a globally exact continuously differentiable augmented Lagrangian function for nonlinear semidefinite programming problems.
Keywords: Penalty function; Augmented Lagrangian function; Exactness; Localization principle; Semidefinite programming; 65K05; 90C30; 90C22 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-018-1239-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:176:y:2018:i:3:d:10.1007_s10957-018-1239-z
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-018-1239-z
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().