Performance Bounds with Curvature for Batched Greedy Optimization
Yajing Liu (),
Zhenliang Zhang (),
Edwin K. P. Chong () and
Ali Pezeshki ()
Additional contact information
Yajing Liu: Colorado State University
Zhenliang Zhang: Intel Labs
Edwin K. P. Chong: Colorado State University
Ali Pezeshki: Colorado State University
Journal of Optimization Theory and Applications, 2018, vol. 177, issue 2, No 12, 535-562
Abstract:
Abstract The batched greedy strategy is an approximation algorithm to maximize a set function subject to a matroid constraint. Starting with the empty set, the batched greedy strategy iteratively adds to the current solution set a batch of elements that results in the largest gain in the objective function while satisfying the matroid constraints. In this paper, we develop bounds on the performance of the batched greedy strategy relative to the optimal strategy in terms of a parameter called the total batched curvature. We show that when the objective function is a polymatroid set function, the batched greedy strategy satisfies a harmonic bound for a general matroid constraint and an exponential bound for a uniform matroid constraint, both in terms of the total batched curvature. We also study the behavior of the bounds as functions of the batch size. Specifically, we prove that the harmonic bound for a general matroid is nondecreasing in the batch size and the exponential bound for a uniform matroid is nondecreasing in the batch size under the condition that the batch size divides the rank of the uniform matroid. Finally, we illustrate our results by considering a task scheduling problem and an adaptive sensing problem.
Keywords: Curvature; Greedy; Matroid; Polymatroid; Submodular; 90C27; 90C59 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-017-1177-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:177:y:2018:i:2:d:10.1007_s10957-017-1177-1
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-017-1177-1
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().