On Unique Solutions of Multiple-State Optimal Design Problems on an Annulus
Krešimir Burazin ()
Additional contact information
Krešimir Burazin: University of Osijek
Journal of Optimization Theory and Applications, 2018, vol. 177, issue 2, No 4, 329-344
Abstract:
Abstract We study the uniqueness and explicit derivation of the relaxed optimal solutions, corresponding to the minimization of weighted sum of potential energies for a mixture of two isotropic conductive materials on an annulus. Recently, it has been shown by Burazin and Vrdoljak that even for multiple-state problems, if the domain is spherically symmetric, then the proper relaxation of the problem by the homogenization method is equivalent to a simpler relaxed problem, stated only in terms of local proportions of given materials. This enabled explicit calculation of a solution on a ball, while problems on an annulus appeared to be more tedious. In this paper, we discuss the uniqueness of a solution of this simpler relaxed problem, when the domain is an annulus and we use the necessary and sufficient conditions of optimality to present a method for explicit calculation of the unique solution of this simpler proper relaxation, which is demonstrated on an example.
Keywords: Stationary diffusion; Optimal design; Homogenization; Optimality conditions; 80A20; 49J20; 80M40; 49K35 (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10957-018-1284-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:177:y:2018:i:2:d:10.1007_s10957-018-1284-7
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-018-1284-7
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().