A Double-Parameter Scaling Broyden–Fletcher–Goldfarb–Shanno Method Based on Minimizing the Measure Function of Byrd and Nocedal for Unconstrained Optimization
Neculai Andrei ()
Additional contact information
Neculai Andrei: Center for Advanced Modeling and Optimization
Journal of Optimization Theory and Applications, 2018, vol. 178, issue 1, No 10, 218 pages
Abstract:
Abstract In this paper, the first two terms on the right-hand side of the Broyden–Fletcher–Goldfarb–Shanno update are scaled with a positive parameter, while the third one is also scaled with another positive parameter. These scaling parameters are determined by minimizing the measure function introduced by Byrd and Nocedal (SIAM J Numer Anal 26:727–739, 1989). The obtained algorithm is close to the algorithm based on clustering the eigenvalues of the Broyden–Fletcher–Goldfarb–Shanno approximation of the Hessian and on shifting its large eigenvalues to the left, but it is not superior to it. Under classical assumptions, the convergence is proved by using the trace and the determinant of the iteration matrix. By using a set of 80 unconstrained optimization test problems, it is proved that the algorithm minimizing the measure function of Byrd and Nocedal is more efficient and more robust than some other scaling Broyden–Fletcher–Goldfarb–Shanno algorithms, including the variants of Biggs (J Inst Math Appl 12:337–338, 1973), Yuan (IMA J Numer Anal 11:325–332, 1991), Oren and Luenberger (Manag Sci 20:845–862, 1974) and of Nocedal and Yuan (Math Program 61:19–37, 1993). However, it is less efficient than the algorithms based on clustering the eigenvalues of the iteration matrix and on shifting its large eigenvalues to the left, as shown by Andrei (J Comput Appl Math 332:26–44, 2018, Numer Algorithms 77:413–432, 2018).
Keywords: Nonlinear programming; Scaling BFGS method; Measure function of Byrd and Nocedal; Global convergence; Numerical comparisons; 49M7; 49M10; 65K05; 90C30 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-018-1288-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:178:y:2018:i:1:d:10.1007_s10957-018-1288-3
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-018-1288-3
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().