A Characterization of Nash Equilibrium for the Games with Random Payoffs
Vikas Vikram Singh () and
Abdel Lisser ()
Additional contact information
Vikas Vikram Singh: Indian Institute of Technology Delhi
Abdel Lisser: Université Paris Sud
Journal of Optimization Theory and Applications, 2018, vol. 178, issue 3, No 14, 998-1013
Abstract:
Abstract We consider a two-player random bimatrix game where each player is interested in the payoffs which can be obtained with certain confidence. The payoff function of each player is defined using a chance constraint. We consider the case where the entries of the random payoff matrix of each player jointly follow a multivariate elliptically symmetric distribution. We show an equivalence between the Nash equilibrium problem and the global maximization of a certain mathematical program. The case where the entries of the payoff matrices are independent normal/Cauchy random variables is also considered. The case of independent normally distributed random payoffs can be viewed as a special case of a multivariate elliptically symmetric distributed random payoffs. As for Cauchy distribution, we show that the Nash equilibrium problem is equivalent to the global maximization of a certain quadratic program. Our theoretical results are illustrated by considering randomly generated instances of the game.
Keywords: Chance-constrained games; Nash equilibrium; Elliptically symmetric distribution; Cauchy distribution; Mathematical program; Quadratic program; 91A10; 90C15; 90C20; 90C26 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-018-1343-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:178:y:2018:i:3:d:10.1007_s10957-018-1343-0
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-018-1343-0
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().