Pricing Bounds for Volatility Derivatives via Duality and Least Squares Monte Carlo
Ivan Guo () and
Gregoire Loeper ()
Additional contact information
Ivan Guo: Monash University
Gregoire Loeper: Monash University
Journal of Optimization Theory and Applications, 2018, vol. 179, issue 2, No 10, 598-617
Abstract:
Abstract Derivatives on the Chicago Board Options Exchange volatility index have gained significant popularity over the last decade. The pricing of volatility derivatives involves evaluating the square root of a conditional expectation which cannot be computed by direct Monte Carlo methods. Least squares Monte Carlo methods can be used, but the sign of the error is difficult to determine. In this paper, we propose a new model-independent technique for computing upper and lower pricing bounds for volatility derivatives. In particular, we first present a general stochastic duality result on payoffs involving convex (or concave) functions. This result also allows us to interpret these contingent claims as a type of chooser options. It is then applied to volatility derivatives along with minor adjustments to handle issues caused by the square root function. The upper bound involves the evaluation of a variance swap, while the lower bound involves estimating a martingale increment corresponding to its hedging portfolio. Both can be achieved simultaneously using a single linear least square regression. Numerical results show that the method works very well for futures, calls and puts under a wide range of parameter choices.
Keywords: VIX derivatives; Convex conjugate; Least squares Monte Carlo; Pricing bounds; 91B28; 65C05 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-017-1168-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:179:y:2018:i:2:d:10.1007_s10957-017-1168-2
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-017-1168-2
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().