EconPapers    
Economics at your fingertips  
 

Gauss–Seidel Method for Multi-leader–follower Games

Atsushi Hori () and Masao Fukushima ()
Additional contact information
Atsushi Hori: Nanzan University
Masao Fukushima: Nanzan University

Journal of Optimization Theory and Applications, 2019, vol. 180, issue 2, No 15, 670 pages

Abstract: Abstract The multi-leader–follower game has many applications such as the bilevel structured market in which two or more enterprises, called leaders, have initiatives, and the other firms, called followers, observe the leaders’ decisions and then decide their own strategies. A special case of the game is the Stackelberg model, or the single-leader–follower game, which has been studied for many years. The Stackelberg game may be reformulated as a mathematical program with equilibrium constraints, which has also been studied extensively in recent years. On the other hand, the multi-leader–follower game may be formulated as an equilibrium problem with equilibrium constraints, in which each leader’s problem is an mathematical program with equilibrium constraints. However, finding an equilibrium point of an equilibrium problem with equilibrium constraints is much more difficult than solving a single mathematical program with equilibrium constraints, because each leader’s problem contains those variables which are common to other players’ problems. Moreover, the constraints of each leader’s problem depend on the other rival leaders’ strategies. In this paper, we propose a Gauss–Seidel type algorithm with a penalty technique for solving an equilibrium problem with equilibrium constraints associated with the multi-leader–follower game, and then suggest a refinement procedure to obtain more accurate solutions. We discuss convergence of the algorithm and report some numerical results to illustrate the behavior of the algorithm.

Keywords: Multi-leader–follower game; Equilibrium problem with equilibrium constraints; S-stationary; B-stationary; 91A06; 91A10; 90C33 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10957-018-1391-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:180:y:2019:i:2:d:10.1007_s10957-018-1391-5

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-018-1391-5

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:180:y:2019:i:2:d:10.1007_s10957-018-1391-5