EconPapers    
Economics at your fingertips  
 

An Efficient Barzilai–Borwein Conjugate Gradient Method for Unconstrained Optimization

Hongwei Liu () and Zexian Liu ()
Additional contact information
Hongwei Liu: Xidian University
Zexian Liu: Xidian University

Journal of Optimization Theory and Applications, 2019, vol. 180, issue 3, No 11, 879-906

Abstract: Abstract The Barzilai–Borwein conjugate gradient methods, which were first proposed by Dai and Kou (Sci China Math 59(8):1511–1524, 2016), are very interesting and very efficient for strictly convex quadratic minimization. In this paper, we present an efficient Barzilai–Borwein conjugate gradient method for unconstrained optimization. Motivated by the Barzilai–Borwein method and the linear conjugate gradient method, we derive a new search direction satisfying the sufficient descent condition based on a quadratic model in a two-dimensional subspace, and design a new strategy for the choice of initial stepsize. A generalized Wolfe line search is also proposed, which is nonmonotone and can avoid a numerical drawback of the original Wolfe line search. Under mild conditions, we establish the global convergence and the R-linear convergence of the proposed method. In particular, we also analyze the convergence for convex functions. Numerical results show that, for the CUTEr library and the test problem collection given by Andrei, the proposed method is superior to two famous conjugate gradient methods, which were proposed by Dai and Kou (SIAM J Optim 23(1):296–320, 2013) and Hager and Zhang (SIAM J Optim 16(1):170–192, 2005), respectively.

Keywords: Barzilai–Borwein method; Barzilai–Borwein conjugate gradient method; Subspace minimization; R-linear convergence; Nonmonotone Wolfe line search; 49M37; 65K05; 90C30 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s10957-018-1393-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:180:y:2019:i:3:d:10.1007_s10957-018-1393-3

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-018-1393-3

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:180:y:2019:i:3:d:10.1007_s10957-018-1393-3