A Projected Primal–Dual Method for Solving Constrained Monotone Inclusions
Luis Briceño-Arias () and
Sergio López Rivera ()
Additional contact information
Luis Briceño-Arias: Universidad Técnica Federico Santa María
Sergio López Rivera: Universidad Técnica Federico Santa María
Journal of Optimization Theory and Applications, 2019, vol. 180, issue 3, No 12, 907-924
Abstract:
Abstract In this paper, we provide an algorithm for solving constrained composite primal–dual monotone inclusions, i.e., monotone inclusions in which a priori information on primal–dual solutions is represented via closed and convex sets. The proposed algorithm incorporates a projection step onto the a priori information sets and generalizes methods proposed in the literature for solving monotone inclusions. Moreover, under the presence of strong monotonicity, we derive an accelerated scheme inspired on the primal–dual algorithm applied to the more general context of constrained monotone inclusions. In the particular case of convex optimization, our algorithm generalizes several primal–dual optimization methods by allowing a priori information on solutions. In addition, we provide an accelerated scheme under strong convexity. An application of our approach with a priori information is constrained convex optimization problems, in which available primal–dual methods impose constraints via Lagrange multiplier updates, usually leading to slow algorithms with unfeasible primal iterates. The proposed modification forces primal iterates to satisfy a selection of constraints onto which we can project, obtaining a faster method as numerical examples exhibit. The obtained results extend and improve several results in the literature.
Keywords: Accelerated schemes; Constrained convex optimization; Monotone operator theory; Proximity operator; Splitting algorithms; 47H05; 65K05; 65K15; 90C25 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-018-1430-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:180:y:2019:i:3:d:10.1007_s10957-018-1430-2
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-018-1430-2
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().