Dynamic Non-diagonal Regularization in Interior Point Methods for Linear and Convex Quadratic Programming
Spyridon Pougkakiotis () and
Jacek Gondzio ()
Additional contact information
Spyridon Pougkakiotis: University of Edinburgh
Jacek Gondzio: University of Edinburgh
Journal of Optimization Theory and Applications, 2019, vol. 181, issue 3, No 11, 905-945
Abstract:
Abstract In this paper, we present a dynamic non-diagonal regularization for interior point methods. The non-diagonal aspect of this regularization is implicit, since all the off-diagonal elements of the regularization matrices are cancelled out by those elements present in the Newton system, which do not contribute important information in the computation of the Newton direction. Such a regularization has multiple goals. The obvious one is to improve the spectral properties of the Newton system solved at each iteration of the interior point method. On the other hand, the regularization matrices introduce sparsity to the aforementioned linear system, allowing for more efficient factorizations. We also propose a rule for tuning the regularization dynamically based on the properties of the problem, such that sufficiently large eigenvalues of the non-regularized system are perturbed insignificantly. This alleviates the need of finding specific regularization values through experimentation, which is the most common approach in the literature. We provide perturbation bounds for the eigenvalues of the non-regularized system matrix and then discuss the spectral properties of the regularized matrix. Finally, we demonstrate the efficiency of the method applied to solve standard small- and medium-scale linear and convex quadratic programming test problems.
Keywords: Primal–dual regularization; Interior point methods; Generalized proximal point methods (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-019-01491-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:181:y:2019:i:3:d:10.1007_s10957-019-01491-1
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-019-01491-1
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().