EconPapers    
Economics at your fingertips  
 

Linear Quadratic Pareto Game of the Stochastic Systems in Infinite Horizon

Yaning Lin ()
Additional contact information
Yaning Lin: Shandong University of Technology

Journal of Optimization Theory and Applications, 2019, vol. 183, issue 2, No 13, 687 pages

Abstract: Abstract This paper investigates the necessary/sufficient conditions for Pareto optimality in the infinite horizon linear quadratic stochastic differential game. Based on the necessary and sufficient characterization of the Pareto optimality, the problem is transformed into a set of constrained stochastic optimal control problems with a special structure. Under the assumption about the Lagrange multipliers, utilizing the stochastic Pontryagin maximum principle, the necessary conditions for the existence of the Pareto efficient strategies are presented. Furthermore, a condition is introduced to guarantee that the element zero does not belong to the Lagrange multiplier set. In addition, the necessary conditions, the convexity condition on the weighted sum cost functional and a transversality condition provide the sufficient conditions for a control to be Pareto efficient. The characterization of Pareto efficient strategies and Pareto solutions is also studied. If the system is stabilizable, then the solvability of the related generalized algebraic Riccati equation provides a sufficient condition under which all Pareto efficient strategies can be obtained by the weighted sum optimality method and all Pareto solutions can be derived based on the solutions of an introduced algebraic Lyapunov equation.

Keywords: Pareto optimality; Stochastic differential game; Infinite horizon; Generalized algebraic Riccati equation; 91A12; 93E03; 93E20 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10957-019-01553-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:183:y:2019:i:2:d:10.1007_s10957-019-01553-4

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-019-01553-4

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-17
Handle: RePEc:spr:joptap:v:183:y:2019:i:2:d:10.1007_s10957-019-01553-4