EconPapers    
Economics at your fingertips  
 

Order-Preservation Properties of Solution Mapping for Parametric Equilibrium Problems and Their Applications

Yuehu Wang () and Baoqing Liu ()
Additional contact information
Yuehu Wang: Nanjing University of Finance and Economics
Baoqing Liu: Nanjing University of Finance and Economics

Journal of Optimization Theory and Applications, 2019, vol. 183, issue 3, No 5, 901 pages

Abstract: Abstract In this paper, we use some order-theoretic fixed point theorems to study the upper order-preservation properties of solution mapping for parametric equilibrium problems. In contrast to lots of existing works on the behaviors of solutions to equilibrium problems, the topic of the order-preservation properties of solutions is relatively new for equilibrium problems. It would be useful for us to analyze the changing trends of solutions to equilibrium problems. In order to show the applied value and theoretic value of this subject, we focus on a class of differential variational inequalities, which are currently receiving much attention. By applying the order-preservation properties of solution mapping to variational inequality, we investigate the existence of mild solutions to differential variational inequalities. Since our approaches are order-theoretic and the underlying spaces are Banach lattices, the results obtained in this paper neither require the bifunctions in equilibrium problems to be continuous nor assume the Lipschitz continuity for the involved mapping in ordinary differential equation.

Keywords: Upper order-preservation property; Parametric equilibrium problems; Order-theoretic fixed point theorems; Differential variational inequality; 47H10; 90C31; 90C33 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10957-019-01579-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:183:y:2019:i:3:d:10.1007_s10957-019-01579-8

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-019-01579-8

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:183:y:2019:i:3:d:10.1007_s10957-019-01579-8