On Minimal Copulas under the Concordance Order
Jae Youn Ahn () and
Sebastian Fuchs ()
Additional contact information
Jae Youn Ahn: Ewha Womans University
Sebastian Fuchs: Universität Salzburg
Journal of Optimization Theory and Applications, 2020, vol. 184, issue 3, No 3, 762-780
Abstract:
Abstract In the present paper, we study extreme negative dependence focussing on the concordance order for copulas. With the absence of a least element for dimensions $$d\ge 3$$d≥3, the set of all minimal elements in the collection of all copulas turns out to be a natural and quite important extreme negative dependence concept. We investigate several sufficient conditions, and we provide a necessary condition for a copula to be minimal. The sufficient conditions are related to the extreme negative dependence concept of d-countermonotonicity and the necessary condition is related to the collection of all copulas minimizing multivariate Kendall’s tau. The concept of minimal copulas has already been proved to be useful in various continuous and concordance order preserving optimization problems including variance minimization and the detection of lower bounds for certain measures of concordance. We substantiate this key role of minimal copulas by showing that every continuous and concordance order preserving functional on copulas is minimized by some minimal copula, and, in the case the continuous functional is even strictly concordance order preserving, it is minimized by minimal copulas only. Applying the above results, we may conclude that every minimizer of Spearman’s rho is also a minimizer of Kendall’s tau.
Keywords: Concordance order; Countermonotonicity; Extreme negative dependence; Kendall’s tau; Minimal copula; Optimization; Spearman’s rho; 49J99; 49K99; 60E05; 60E15; 62H20 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-019-01618-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:184:y:2020:i:3:d:10.1007_s10957-019-01618-4
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-019-01618-4
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().