A Convex Optimization Approach to Dynamic Programming in Continuous State and Action Spaces
Insoon Yang ()
Additional contact information
Insoon Yang: Seoul National University
Journal of Optimization Theory and Applications, 2020, vol. 187, issue 1, No 7, 133-157
Abstract:
Abstract In this paper, a convex optimization-based method is proposed for numerically solving dynamic programs in continuous state and action spaces. The key idea is to approximate the output of the Bellman operator at a particular state by the optimal value of a convex program. The approximate Bellman operator has a computational advantage because it involves a convex optimization problem in the case of control-affine systems and convex costs. Using this feature, we propose a simple dynamic programming algorithm to evaluate the approximate value function at pre-specified grid points by solving convex optimization problems in each iteration. We show that the proposed method approximates the optimal value function with a uniform convergence property in the case of convex optimal value functions. We also propose an interpolation-free design method for a control policy, of which performance converges uniformly to the optimum as the grid resolution becomes finer. When a nonlinear control-affine system is considered, the convex optimization approach provides an approximate policy with a provable suboptimality bound. For general cases, the proposed convex formulation of dynamic programming operators can be modified as a nonconvex bilevel program, in which the inner problem is a linear program, without losing the uniform convergence properties.
Keywords: Dynamic programming; Convex optimization; Optimal control; Stochastic control; 90C39; 49L20; 90C25 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10957-020-01747-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:187:y:2020:i:1:d:10.1007_s10957-020-01747-1
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-020-01747-1
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().