EconPapers    
Economics at your fingertips  
 

A Proximal/Gradient Approach for Computing the Nash Equilibrium in Controllable Markov Games

Julio B. Clempner ()
Additional contact information
Julio B. Clempner: National Polytechnic Institute

Journal of Optimization Theory and Applications, 2021, vol. 188, issue 3, No 11, 847-862

Abstract: Abstract This paper proposes a new algorithm for computing the Nash equilibrium based on an iterative approach of both the proximal and the gradient method for homogeneous, finite, ergodic and controllable Markov chains. We conceptualize the problem as a poly-linear programming problem. Then, we regularize the poly-linear functional employing a regularization approach over the Lagrange functional for ensuring the method to converge to some of the Nash equilibria of the game. This paper presents two main contributions: The first theoretical result is the proposed iterative approach, which employs both the proximal and the gradient method for computing the Nash equilibria in Markov games. The method transforms the game theory problem in a system of equations, in which each equation itself is an independent optimization problem for which the necessary condition of a minimum is computed employing a nonlinear programming solver. The iterated approach provides a quick rate of convergence to the Nash equilibrium point. The second computational contribution focuses on the analysis of the convergence of the proposed method and computes the rate of convergence of the step-size parameter. These results are interesting within the context of computational and algorithmic game theory. A numerical example illustrates the proposed approach.

Keywords: Nash equilibrium; Non-cooperative game theory; Algorithm; Regularization; Proximal gradient; 91A12; 91A40; 91A80 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10957-021-01812-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:188:y:2021:i:3:d:10.1007_s10957-021-01812-3

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-021-01812-3

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:188:y:2021:i:3:d:10.1007_s10957-021-01812-3