EconPapers    
Economics at your fingertips  
 

Global Solution of Semi-infinite Programs with Existence Constraints

Hatim Djelassi and Alexander Mitsos ()
Additional contact information
Hatim Djelassi: RWTH Aachen University
Alexander Mitsos: RWTH Aachen University

Journal of Optimization Theory and Applications, 2021, vol. 188, issue 3, No 12, 863-881

Abstract: Abstract We consider what we term existence-constrained semi-infinite programs. They contain a finite number of (upper-level) variables, a regular objective, and semi-infinite existence constraints. These constraints assert that for all (medial-level) variable values from a set of infinite cardinality, there must exist (lower-level) variable values from a second set that satisfy an inequality. Existence-constrained semi-infinite programs are a generalization of regular semi-infinite programs, possess three rather than two levels, and are found in a number of applications. Building on our previous work on the global solution of semi-infinite programs (Djelassi and Mitsos in J Glob Optim 68(2):227–253, 2017), we propose (for the first time) an algorithm for the global solution of existence-constrained semi-infinite programs absent any convexity or concavity assumptions. The algorithm is guaranteed to terminate with a globally optimal solution with guaranteed feasibility under assumptions that are similar to the ones made in the regular semi-infinite case. In particular, it is assumed that host sets are compact, defining functions are continuous, an appropriate global nonlinear programming subsolver is used, and that there exists a Slater point with respect to the semi-infinite existence constraints. A proof of finite termination is provided. Numerical results are provided for the solution of an adjustable robust design problem from the chemical engineering literature.

Keywords: Semi-infinite programming; Multi-level programming; Nonlinear programming; Nonconvex; Global optimization; 90C34; 65K05; 90C26; 90C33 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10957-021-01813-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:188:y:2021:i:3:d:10.1007_s10957-021-01813-2

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-021-01813-2

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:188:y:2021:i:3:d:10.1007_s10957-021-01813-2