Generalized Hohmann, Bi-Parabolic and Bi-Elliptic Planar Impulsive Transfer Using Transformed Variables
Thomas Carter () and
Mayer Humi ()
Additional contact information
Thomas Carter: Eastern Connecticut State University
Mayer Humi: Worcester Polytechnic Institute
Journal of Optimization Theory and Applications, 2021, vol. 189, issue 1, No 6, 117-135
Abstract:
Abstract The problem of planar optimal impulsive transfer between ellipses in a Newtonian gravitational field with the final time- free is approached through a transformation of variables. New necessary conditions for optimal Bi-Elliptic Transfers are presented in terms of these transformed variables. The work is applied to examples in which the apses of the ellipses are aligned. The Generalized Hohmann, Bi-Elliptic and Bi-Parabolic Transfers are discussed. An example is presented that shows that Bi-Elliptic Transfer cannot be optimal if the final time is free. The approach can also be applied to determine optimality of transfers for other aligned configurations. This project is then changed to a fixed final time minimization problem. For this problem, it is found that there is a one-to-one correspondence between the final time and the apogee of the transfer ellipse. It is shown from this fact that there can be optimal Bi-Elliptic Transfers if the final time is fixed.
Keywords: Orbit transfer; Bi-Elliptic; Bi-Parabolic; Hohmann; Transformed variables (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10957-021-01824-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:189:y:2021:i:1:d:10.1007_s10957-021-01824-z
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-021-01824-z
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().