Realization of a Framework for Simulation-Based Large-Scale Shape Optimization Using Vertex Morphing
Aditya Ghantasala (),
Reza Najian Asl (),
Armin Geiser (),
Andrew Brodie (),
Efthymios Papoutsis () and
Kai-Uwe Bletzinger ()
Additional contact information
Aditya Ghantasala: Technische Universität München
Reza Najian Asl: Technische Universität München
Armin Geiser: Technische Universität München
Andrew Brodie: BMW Group
Efthymios Papoutsis: BMW Group
Kai-Uwe Bletzinger: Technische Universität München
Journal of Optimization Theory and Applications, 2021, vol. 189, issue 1, No 8, 164-189
Abstract:
Abstract There is a significant tendency in the industry for automation of the engineering design process. This requires the capability of analyzing an existing design and proposing or ideally generating an optimal design using numerical optimization. In this context, efficient and robust realization of such a framework for numerical shape optimization is of prime importance. Another requirement of such a framework is modularity, such that the shape optimization can involve different physics. This requires that different physics solvers should be handled in black-box nature. The current contribution discusses the conceptualization and applications of a general framework for numerical shape optimization using the vertex morphing parametrization technique. We deal with both 2D and 3D shape optimization problems, of which 3D problems usually tend to be expensive and are candidates for special attention in terms of efficient and high-performance computing. The paper demonstrates the different aspects of the framework, together with the challenges in realizing them. Several numerical examples involving different physics and constraints are presented to show the flexibility and extendability of the framework.
Keywords: Shape optimization; Vertex morphing; Geometric constraints; Multi-physics optimization; Additive manufacturing (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10957-021-01826-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:189:y:2021:i:1:d:10.1007_s10957-021-01826-x
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-021-01826-x
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().