EconPapers    
Economics at your fingertips  
 

On the Linear Convergence of Two Decentralized Algorithms

Yao Li () and Ming Yan ()
Additional contact information
Yao Li: Michigan State University
Ming Yan: Michigan State University

Journal of Optimization Theory and Applications, 2021, vol. 189, issue 1, No 12, 290 pages

Abstract: Abstract Decentralized algorithms solve multi-agent problems over a connected network, where the information can only be exchanged with the accessible neighbors. Though there exist several decentralized optimization algorithms, there are still gaps in convergence conditions and rates between decentralized and centralized algorithms. In this paper, we fill some gaps by considering two decentralized algorithms: EXTRA and NIDS. They both converge linearly with strongly convex objective functions. We will answer two questions regarding them. What are the optimal upper bounds for their stepsizes? Do decentralized algorithms require more properties on the functions for linear convergence than centralized ones? More specifically, we relax the required conditions for linear convergence of both algorithms. For EXTRA, we show that the stepsize is comparable to that of centralized algorithms. For NIDS, the upper bound of the stepsize is shown to be exactly the same as the centralized ones. In addition, we relax the requirement for the objective functions and the mixing matrices. We provide the linear convergence results for both algorithms under the weakest conditions.

Keywords: Decentralized optimization; EXTRA; NIDS; Mixing matrix; Linear convergence; 49J53; 49K99 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10957-021-01833-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:189:y:2021:i:1:d:10.1007_s10957-021-01833-y

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-021-01833-y

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:189:y:2021:i:1:d:10.1007_s10957-021-01833-y