EconPapers    
Economics at your fingertips  
 

A Decentralized Multi-objective Optimization Algorithm

Maude J. Blondin () and Matthew Hale ()
Additional contact information
Maude J. Blondin: Université de Sherbrooke
Matthew Hale: University of Florida

Journal of Optimization Theory and Applications, 2021, vol. 189, issue 2, No 6, 458-485

Abstract: Abstract During the past few decades, multi-agent optimization problems have drawn increased attention from the research community. When multiple objective functions are present among agents, many works optimize the sum of these objective functions. However, this formulation implies a decision regarding the relative importance of each objective: optimizing the sum is a special case of a multi-objective problem in which all objectives are prioritized equally. To enable more general prioritizations, we present a distributed optimization algorithm that explores Pareto optimal solutions for non-homogeneously weighted sums of objective functions. This exploration is performed through a new rule based on agents’ priorities that generates edge weights in agents’ communication graph. These weights determine how agents update their decision variables with information received from other agents in the network. Agents initially disagree on the priorities of objective functions, though they are driven to agree upon them as they optimize. As a result, agents still reach a common solution. The network-level weight matrix is (non-doubly) stochastic, contrasting with many works on the subject in which the network-level weight matrix is doubly-stochastic. New theoretical analyses are therefore developed to ensure convergence of the proposed algorithm. This paper provides a gradient-based optimization algorithm, proof of convergence to solutions, and convergence rates of the proposed algorithm. It is shown that agents’ initial priorities influence the convergence rate of the proposed algorithm and that these initial choices affect its long-run behavior. Numerical results performed with different numbers of agents illustrate the performance and effectiveness of the proposed algorithm.

Keywords: Multi-agent systems; Distributed optimization; Pareto front; Multi-objective optimization (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10957-021-01840-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:189:y:2021:i:2:d:10.1007_s10957-021-01840-z

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-021-01840-z

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:189:y:2021:i:2:d:10.1007_s10957-021-01840-z