Sparse Network Optimization for Synchronization
Regina S. Burachik (),
Alexander C. Kalloniatis () and
C. Yalçın Kaya ()
Additional contact information
Regina S. Burachik: University of South Australia
Alexander C. Kalloniatis: Defence Science and Technology Group
C. Yalçın Kaya: University of South Australia
Journal of Optimization Theory and Applications, 2021, vol. 191, issue 1, No 9, 229-251
Abstract:
Abstract We propose new mathematical optimization models for generating sparse dynamical graphs, or networks, that can achieve synchronization. The synchronization phenomenon is studied using the Kuramoto model, defined in terms of the adjacency matrix of the graph and the coupling strength of the network, modelling the so-called coupled oscillators. Besides sparsity, we aim to obtain graphs which have good connectivity properties, resulting in small coupling strength for synchronization. We formulate three mathematical optimization models for this purpose. Our first model is a mixed integer optimization problem, subject to ODE constraints, reminiscent of an optimal control problem. As expected, this problem is computationally very challenging, if not impossible, to solve, not only because it involves binary variables but also some of its variables are functions. The second model is a continuous relaxation of the first one, and the third is a discretization of the second, which is computationally tractable by employing standard optimization software. We design dynamical graphs that synchronize, by solving the relaxed problem and applying a practical algorithm for various graph sizes, with randomly generated intrinsic natural frequencies and initial phase variables. We test robustness of these graphs by carrying out numerical simulations with random data and constructing the expected value of the network’s order parameter and its variance under this random data, as a guide for assessment.
Keywords: Optimization; Sparse graphs; Sparse networks; Synchronization; Kuramoto model; Optimal control; Discretization; Primary 49M20; 49M25; Secondary 92B25 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10957-021-01933-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:191:y:2021:i:1:d:10.1007_s10957-021-01933-9
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-021-01933-9
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().