Modified Legendre–Gauss–Radau Collocation Method for Optimal Control Problems with Nonsmooth Solutions
Joseph D. Eide (),
William W. Hager () and
Anil V. Rao ()
Additional contact information
Joseph D. Eide: University of Florida
William W. Hager: University of Florida
Anil V. Rao: University of Florida
Journal of Optimization Theory and Applications, 2021, vol. 191, issue 2, No 12, 600-633
Abstract:
Abstract A new method is developed for solving optimal control problems whose solutions are nonsmooth. The method developed in this paper employs a modified form of the Legendre–Gauss–Radau orthogonal direct collocation method. This modified Legendre–Gauss–Radau method adds two variables and two constraints at the end of a mesh interval when compared with a previously developed standard Legendre–Gauss–Radau collocation method. The two additional variables are the time at the interface between two mesh intervals and the control at the end of each mesh interval. The two additional constraints are a collocation condition for those differential equations that depend upon the control and an inequality constraint on the control at the endpoint of each mesh interval. The additional constraints modify the search space of the nonlinear programming problem such that an accurate approximation to the location of the nonsmoothness is obtained. The transformed adjoint system of the modified Legendre–Gauss–Radau method is then developed. Using this transformed adjoint system, a method is developed to transform the Lagrange multipliers of the nonlinear programming problem to the costate of the optimal control problem. Furthermore, it is shown that the costate estimate satisfies one of the Weierstrass–Erdmann optimality conditions. Finally, the method developed in this paper is demonstrated on an example whose solution is nonsmooth.
Keywords: Optimal control; Gaussian quadrature collocation; Lavrentiev phenomenon; Nonsmooth optimal control (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10957-021-01810-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:191:y:2021:i:2:d:10.1007_s10957-021-01810-5
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-021-01810-5
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().