A Mixed Finite Differences Scheme for Gradient Approximation
Marco Boresta (),
Tommaso Colombo (),
Alberto Santis () and
Stefano Lucidi ()
Additional contact information
Marco Boresta: Sapienza University of Rome
Tommaso Colombo: Sapienza University of Rome
Alberto Santis: Sapienza University of Rome
Stefano Lucidi: Sapienza University of Rome
Journal of Optimization Theory and Applications, 2022, vol. 194, issue 1, No 1, 24 pages
Abstract:
Abstract In this paper, we focus on the linear functionals defining an approximate version of the gradient of a function. These functionals are often used when dealing with optimization problems where the computation of the gradient of the objective function is costly or the objective function values are affected by some noise. These functionals have been recently considered to estimate the gradient of the objective function by the expected value of the function variations in the space of directions. The expected value is then approximated by a sample average over a proper (random) choice of sample directions in the domain of integration. In this way, the approximation error is characterized by statistical properties of the sample average estimate, typically its variance. Therefore, while useful and attractive bounds for the error variance can be expressed in terms of the number of function evaluations, nothing can be said on the error of a single experiment that could be quite large. This work instead is aimed at deriving an approximation scheme for linear functionals approximating the gradient, whose error of approximation can be characterized by a deterministic point of view in the case of noise-free data. The previously mentioned linear functionals are no longer considered as expected values over the space of directions, but rather as the filtered derivative of the objective function by a Gaussian kernel. By using this new approach, a gradient estimation based on a suitable linear combination of central finite differences at different step sizes is proposed and deterministic bounds that do not depend on the particular sample of points considered are computed. In the noisy setting, on the other end, the variance of the estimation error of the proposed method is showed to be strictly lower than the one of the estimation error of the Central Finite Difference scheme. Numerical experiments on a set of test functions are encouraging, showing good performances compared to those of some methods commonly used in the literature, also in the noisy setting.
Keywords: Gradient approximation; Filtered derivative; Derivative free optimization (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10957-021-01994-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:194:y:2022:i:1:d:10.1007_s10957-021-01994-w
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-021-01994-w
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().