Closed-form Geodesics and Optimization for Riemannian Logarithms of Stiefel and Flag Manifolds
Du Nguyen ()
Journal of Optimization Theory and Applications, 2022, vol. 194, issue 1, No 6, 142-166
Abstract:
Abstract We provide two closed-form geodesic formulas for a family of metrics on Stiefel manifolds recently introduced by Hüper, Markina and Silva Leite, reparameterized by two positive numbers, having both the embedded and canonical metrics as special cases. The closed-form formulas allow us to compute geodesics by matrix exponential in reduced dimension for low-rank Stiefel manifolds. We follow the approach of minimizing the square Frobenius distance between a geodesic ending point to a given point on the manifold to compute the logarithm map and geodesic distance between two endpoints, using Fréchet derivatives to compute the gradient of this objective function. We focus on two optimization methods, gradient descent and L-BFGS. This leads to a new framework to compute the geodesic distance for manifolds with known geodesic formula but no closed-form logarithm map. We show the approach works well for Stiefel as well as flag manifolds. The logarithm map could be used to compute the Riemannian center of mass for these manifolds equipped with the above metrics. The method to translate directional derivatives using Fréchet derivatives to a gradient could potentially be applied to other matrix equations.
Keywords: Stiefel manifold; Geodesic; Computer vision; Flag manifold; Logarithm map; Riemannian center of mass; Fréchet derivative; 65K10; 58C05; 49Q12; 53C25; 57Z20; 57Z25; 68T05; 68T45 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10957-022-02012-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:194:y:2022:i:1:d:10.1007_s10957-022-02012-3
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-022-02012-3
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().