EconPapers    
Economics at your fingertips  
 

On the Existence of Greatest Elements and Maximizers

Federico Quartieri

Journal of Optimization Theory and Applications, 2022, vol. 195, issue 2, No 1, 375-389

Abstract: Abstract We obtain several characterizations of the existence of greatest elements of a total preorder. The characterizations pertain to the existence of unconstrained greatest elements of a total preorder and to the existence of constrained greatest elements of a total preorder on every nonempty compact subset of its ground set. The necessary and sufficient conditions are purely topological and, in the case of constrained greatest elements, are formulated by making use of a preorder relation on the set of all topologies that can be defined on the ground set of the objective relation. Observing that every function into a totally ordered set can be naturally conceived as a total preorder, we then reformulate the mentioned characterizations in the more restrictive case of an objective function with a totally ordered codomain. The reformulations are expressed in terms of upper semi- and pseudo-continuity by showing a topological connection between the two notions of generalized continuity.

Keywords: Existence of greatest elements; Existence of maximizers; Characterization; Comparison of topologies; 49J27; 54A10; 91B02 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10957-022-02070-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:195:y:2022:i:2:d:10.1007_s10957-022-02070-7

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-022-02070-7

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:195:y:2022:i:2:d:10.1007_s10957-022-02070-7