EconPapers    
Economics at your fingertips  
 

Accelerated Stochastic Variance Reduction for a Class of Convex Optimization Problems

Lulu He (), Jimin Ye () and E. Jianwei ()
Additional contact information
Lulu He: Xi’dian University
Jimin Ye: Xi’dian University
E. Jianwei: Guangxi Minzu University

Journal of Optimization Theory and Applications, 2023, vol. 196, issue 3, No 2, 810-828

Abstract: Abstract Katyusha momentum is a famous and efficient alternative acceleration method that used for stochastic optimization problems, which can reduce the potential accumulation error from the process of randomly sampling, induced by classical Nesterov’s acceleration technique. The nature idea behind the Katyusha momentum is to use a convex combination framework instead of extrapolation framework used in Nesterov’s momentum. In this paper, we design a Katyusha-like momentum step, i.e., a negative momentum framework, and incorporate it into the classical variance reduction stochastic gradient algorithm. Based on the built negative momentum-based framework, we proposed an accelerated stochastic algorithm, namely negative momentum-based stochastic variance reduction gradient (NMSVRG) algorithm for minimizing a class of convex finite-sum problems. There is only one extra parameter needed to turn in NMSVRG algorithm, which is obviously more friendly in parameter turning than the original Katyusha momentum-based algorithm. We provided a rigorous theoretical analysis and shown that the proposed NMSVRG algorithm is superior to the SVRG algorithm and is comparable to the best one in the existing literature in convergence rate. Finally, experimental results verify our analysis and show again that our proposed algorithm is superior to the state-of-the-art-related stochastic algorithms.

Keywords: Katyusha momentum; Variance reduction; Finite-sum optimization; Convex optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10957-022-02157-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:196:y:2023:i:3:d:10.1007_s10957-022-02157-1

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-022-02157-1

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:196:y:2023:i:3:d:10.1007_s10957-022-02157-1