General Hölder Smooth Convergence Rates Follow from Specialized Rates Assuming Growth Bounds
Benjamin Grimmer ()
Additional contact information
Benjamin Grimmer: Johns Hopkins University
Journal of Optimization Theory and Applications, 2023, vol. 197, issue 1, No 3, 70 pages
Abstract:
Abstract Often in the analysis of first-order methods for both smooth and nonsmooth optimization, assuming the existence of a growth/error bound or KL condition facilitates much stronger convergence analysis. Hence, separate analysis is typically needed for the general case and for the growth bounded cases. We give meta-theorems for deriving general convergence rates from those assuming a growth lower bound. Applying this simple but conceptually powerful tool to the proximal point, subgradient, bundle, dual averaging, gradient descent, Frank–Wolfe and universal accelerated methods immediately recovers their known convergence rates for general convex optimization problems from their specialized rates. New convergence results follow for bundle methods, dual averaging and Frank–Wolfe. Our results can lift any rate based on Hölder continuous gradients and Hölder growth bounds. Moreover, our theory provides simple proofs of optimal convergence lower bounds under Hölder growth from textbook examples without growth bounds.
Keywords: First-order methods; Convex optimization; Convergence rates; Growth/error bounds; Restarting schemes; 65K05; 90C25; 90C30 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10957-023-02178-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:197:y:2023:i:1:d:10.1007_s10957-023-02178-4
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-023-02178-4
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().