Improved Convex and Concave Relaxations of Composite Bilinear Forms
Matthew E. Wilhelm and
Matthew D. Stuber ()
Additional contact information
Matthew E. Wilhelm: University of Connecticut
Matthew D. Stuber: University of Connecticut
Journal of Optimization Theory and Applications, 2023, vol. 197, issue 1, No 7, 174-204
Abstract:
Abstract Deterministic nonconvex optimization solvers generate convex relaxations of nonconvex functions by making use of underlying factorable representations. One approach introduces auxiliary variables assigned to each factor that lifts the problem into a higher-dimensional decision space. In contrast, a generalized McCormick relaxation approach offers the significant advantage of constructing relaxations in the lower dimensionality space of the original problem without introducing auxiliary variables, often referred to as a “reduced-space” approach. Recent contributions illustrated how additional nontrivial inequality constraints may be used in factorable programming to tighten relaxations of the ubiquitous bilinear term. In this work, we exploit an analogous representation of McCormick relaxations and factorable programming to formulate tighter relaxations in the original decision space. We develop the underlying theory to generate necessarily tighter reduced-space McCormick relaxations when a priori convex/concave relaxations are known for intermediate bilinear terms. We then show how these rules can be generalized within a McCormick relaxation scheme via three different approaches: the use of a McCormick relaxations coupled to affine arithmetic, the propagation of affine relaxations implied by subgradients, and an enumerative approach that directly uses relaxations of each factor. The developed approaches are benchmarked on a library of optimization problems using the EAGO.jl optimizer. Two case studies are also considered to demonstrate the developments: an application in advanced manufacturing to optimize supply chain quality metrics and a global dynamic optimization application for rigorous model validation of a kinetic mechanism. The presented subgradient method leads to an improvement in CPU time required to solve the considered problems to $$\epsilon $$ ϵ -global optimality.
Keywords: Deterministic global optimization; Nonconvex programming; McCormick relaxations; Branch-and-bound; Multilinear products; 65K05; 90C26; 90C30 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10957-023-02196-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:197:y:2023:i:1:d:10.1007_s10957-023-02196-2
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-023-02196-2
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().