EconPapers    
Economics at your fingertips  
 

Fast Multiobjective Gradient Methods with Nesterov Acceleration via Inertial Gradient-Like Systems

Konstantin Sonntag () and Sebastian Peitz ()
Additional contact information
Konstantin Sonntag: Paderborn University
Sebastian Peitz: Paderborn University

Journal of Optimization Theory and Applications, 2024, vol. 201, issue 2, No 3, 539-582

Abstract: Abstract We derive efficient algorithms to compute weakly Pareto optimal solutions for smooth, convex and unconstrained multiobjective optimization problems in general Hilbert spaces. To this end, we define a novel inertial gradient-like dynamical system in the multiobjective setting, which trajectories converge weakly to Pareto optimal solutions. Discretization of this system yields an inertial multiobjective algorithm which generates sequences that converge weakly to Pareto optimal solutions. We employ Nesterov acceleration to define an algorithm with an improved convergence rate compared to the plain multiobjective steepest descent method (Algorithm 1). A further improvement in terms of efficiency is achieved by avoiding the solution of a quadratic subproblem to compute a common step direction for all objective functions, which is usually required in first-order methods. Using a different discretization of our inertial gradient-like dynamical system, we obtain an accelerated multiobjective gradient method that does not require the solution of a subproblem in each step (Algorithm 2). While this algorithm does not converge in general, it yields good results on test problems while being faster than standard steepest descent.

Keywords: Multiobjective optimization; Gradient methods; Nesterov acceleration; Inertial dynamics; Lyapunov analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10957-024-02389-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:201:y:2024:i:2:d:10.1007_s10957-024-02389-3

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-024-02389-3

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-19
Handle: RePEc:spr:joptap:v:201:y:2024:i:2:d:10.1007_s10957-024-02389-3