EconPapers    
Economics at your fingertips  
 

Nonsmooth Nonconvex Stochastic Heavy Ball

Tam Le ()
Additional contact information
Tam Le: University of Toulouse

Journal of Optimization Theory and Applications, 2024, vol. 201, issue 2, No 8, 699-719

Abstract: Abstract Motivated by the conspicuous use of momentum-based algorithms in deep learning, we study a nonsmooth nonconvex stochastic heavy ball method and show its convergence. Our approach builds upon semialgebraic (definable) assumptions commonly met in practical situations and combines a nonsmooth calculus with a differential inclusion method. Additionally, we provide general conditions for the sample distribution to ensure the convergence of the objective function. Our results are general enough to justify the use of subgradient sampling in modern implementations that heuristically apply rules of differential calculus on nonsmooth functions, such as backpropagation or implicit differentiation. As for the stochastic subgradient method, our analysis highlights that subgradient sampling can make the stochastic heavy ball method converge to artificial critical points. Thanks to the semialgebraic setting, we address this concern showing that these artifacts are almost surely avoided when initializations are randomized, leading the method to converge to Clarke critical points.

Keywords: Heavy ball; Stochastic gradient; Deep learning; Nonsmooth optimization; O-minimal structure; 49J53; 68Q25; 68W27; 49J52; 28B20 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10957-024-02408-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:201:y:2024:i:2:d:10.1007_s10957-024-02408-3

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-024-02408-3

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-19
Handle: RePEc:spr:joptap:v:201:y:2024:i:2:d:10.1007_s10957-024-02408-3