EconPapers    
Economics at your fingertips  
 

New Interior-Point Approach for One- and Two-Class Linear Support Vector Machines Using Multiple Variable Splitting

Jordi Castro ()
Additional contact information
Jordi Castro: Universitat Politècnica de Catalunya, UPC

Journal of Optimization Theory and Applications, 2024, vol. 202, issue 1, No 11, 237-270

Abstract: Abstract Multiple variable splitting is a general technique for decomposing problems by using copies of variables and additional linking constraints that equate their values. The resulting large optimization problem can be solved with a specialized interior-point method that exploits the problem structure and computes the Newton direction with a combination of direct and iterative solvers (i.e. Cholesky factorizations and preconditioned conjugate gradients for linear systems related to, respectively, subproblems and new linking constraints). The present work applies this method to solving real-world binary classification and novelty (or outlier) detection problems by means of, respectively, two-class and one-class linear support vector machines (SVMs). Unlike previous interior-point approaches for SVMs, which were practical only with low-dimensional points, the new proposal can also deal with high-dimensional data. The new method is compared with state-of-the-art solvers for SVMs that are based on either interior-point algorithms (such as SVM-OOPS) or specific algorithms developed by the machine learning community (such as LIBSVM and LIBLINEAR). The computational results show that, for two-class SVMs, the new proposal is competitive not only against previous interior-point methods—and much more efficient than they are with high-dimensional data—but also against LIBSVM, whereas LIBLINEAR generally outperformed the proposal. For one-class SVMs, the new method consistently outperformed all other approaches, in terms of either solution time or solution quality.

Keywords: Interior-point methods; Support vector classifier; One-class support vector machine; Multiple variable Splitting; Large-scale optimization; 90C51; 90C20; 90C90; 62H30 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10957-022-02103-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:202:y:2024:i:1:d:10.1007_s10957-022-02103-1

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-022-02103-1

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:202:y:2024:i:1:d:10.1007_s10957-022-02103-1