Exterior-Point Optimization for Sparse and Low-Rank Optimization
Shuvomoy Das Gupta (),
Bartolomeo Stellato () and
Bart P. G. Parys ()
Additional contact information
Shuvomoy Das Gupta: Massachusetts Institute of Technology
Bartolomeo Stellato: Princeton University
Bart P. G. Parys: Massachusetts Institute of Technology
Journal of Optimization Theory and Applications, 2024, vol. 202, issue 2, No 11, 795-833
Abstract:
Abstract Many problems of substantial current interest in machine learning, statistics, and data science can be formulated as sparse and low-rank optimization problems. In this paper, we present the nonconvex exterior-point optimization solver (NExOS)—a first-order algorithm tailored to sparse and low-rank optimization problems. We consider the problem of minimizing a convex function over a nonconvex constraint set, where the set can be decomposed as the intersection of a compact convex set and a nonconvex set involving sparse or low-rank constraints. Unlike the convex relaxation approaches, NExOS finds a locally optimal point of the original problem by solving a sequence of penalized problems with strictly decreasing penalty parameters by exploiting the nonconvex geometry. NExOS solves each penalized problem by applying a first-order algorithm, which converges linearly to a local minimum of the corresponding penalized formulation under regularity conditions. Furthermore, the local minima of the penalized problems converge to a local minimum of the original problem as the penalty parameter goes to zero. We then implement and test NExOS on many instances from a wide variety of sparse and low-rank optimization problems, empirically demonstrating that our algorithm outperforms specialized methods.
Keywords: Nonconvex optimization; Sparse optimization; Low-rank optimization; First-order algorithms; 65K05; 90C30 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10957-024-02448-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:202:y:2024:i:2:d:10.1007_s10957-024-02448-9
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-024-02448-9
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().