The Synthesis of Optimal Control Laws Using Isaacs’ Method for the Solution of Differential Games
Meir Pachter () and
Isaac E. Weintraub ()
Additional contact information
Meir Pachter: Air Force Institute of Technology
Isaac E. Weintraub: Air Force Research Laboratory
Journal of Optimization Theory and Applications, 2024, vol. 202, issue 3, No 6, 1137-1157
Abstract:
Abstract In this paper we advocate for Isaacs’ method for the solution of differential games to be applied to the solution of optimal control problems. To make the argument, the vehicle employed is Pontryagin’s canonical optimal control example, which entails a double integrator plant. However, rather than controlling the state to the origin, we require the end state to reach a terminal set that contains the origin in its interior. Indeed, in practice, it is required to control to a prescribed tolerance rather than reach a desired end state; constraining the end state to a terminal manifold of co-dimension n − 1 renders the optimal control problem easier to solve. The global solution of the optimal control problem is obtained and the synthesized optimal control law is in state feedback form. In this respect, two target sets are considered: a smooth circular target and a square target with corners. Closed-loop state-feedback control laws are synthesized that drive the double integrator plant from an arbitrary initial state to the target set in minimum time. This is accomplished using Isaacs’ method for the solution of differential games, which entails dynamic programming (DP), working backward from the usable part of the target set, as opposed to obtaining the optimal trajectories using the necessary conditions for optimality provided by Pontryagin’s Maximum Principle (PMP). In this paper, the case is made for Isaacs’ method for the solution of differential games to be applied to the solution of optimal control problems by way of the juxtaposition of the PMP and DP methods.
Keywords: Differential game theory; Optimal control theory; Pontryagin’s maximum principle; Control theory; Optimization; 35A01; 65L10; 65L12; 65L20; 65L70 (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10957-024-02490-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:202:y:2024:i:3:d:10.1007_s10957-024-02490-7
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-024-02490-7
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().