Continuous Equality Knapsack with Probit-Style Objectives
Jamie Fravel (),
Robert Hildebrand () and
Laurel Travis
Additional contact information
Jamie Fravel: Virginia Tech
Robert Hildebrand: Virginia Tech
Laurel Travis: Virginia Tech
Journal of Optimization Theory and Applications, 2024, vol. 202, issue 3, No 3, 1060-1076
Abstract:
Abstract We study continuous, equality knapsack problems with uniform separable, non-convex objective functions that are continuous, antisymmetric about a point, and have concave and convex regions. For example, this model captures a simple allocation problem with the goal of optimizing an expected value where the objective is a sum of cumulative distribution functions of identically distributed normal distributions (i.e., a sum of inverse probit functions). We prove structural results of this model under general assumptions and provide two algorithms for efficient optimization: (1) running in linear time and (2) running in a constant number of operations given preprocessing of the objective function.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10957-024-02503-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:202:y:2024:i:3:d:10.1007_s10957-024-02503-5
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-024-02503-5
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().