Bounds of the Solution Set to the Polynomial Complementarity Problem
Yang Xu (),
Guyan Ni () and
Mengshi Zhang ()
Additional contact information
Yang Xu: National University of Defense Technology
Guyan Ni: National University of Defense Technology
Mengshi Zhang: National University of Defense Technology
Journal of Optimization Theory and Applications, 2024, vol. 203, issue 1, No 7, 146-164
Abstract:
Abstract In this paper, we investigate bounds of solution set of the polynomial complementarity problem. When a polynomial complementarity problem has a solution, we propose a lower bound of solution norm by entries of coefficient tensors of the polynomial. We prove that the proposing lower bound is larger than some existing lower bounds appeared in tensor complementarity problems and polynomial complementarity problems. When the solution set of a polynomial complementarity problem is nonempty, and the coefficient tensor of the leading term of the polynomial is an $$R_0$$ R 0 -tensor, we propose a new upper bound of solution norm of the polynomial complementarity problem by a quantity defining by an optimization problem. Furthermore, we prove that when coefficient tensors of the polynomial are partially symmetric, the proposing lower bound formula with respect to tensor tuples reaches the maximum value, and the proposing upper bound formula with respect to tensor tuples reaches the minimum value. Finally, by using such partial symmetry, we obtain bounds of solution norm by coefficients of the polynomial.
Keywords: Polynomial complementarity problem; Tensor; Bounds of the solution set; 90C26; 90C33 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10957-024-02484-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:203:y:2024:i:1:d:10.1007_s10957-024-02484-5
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-024-02484-5
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().