EconPapers    
Economics at your fingertips  
 

Distributionally Robust Variational Inequalities: Relaxation, Quantification and Discretization

Jie Jiang ()
Additional contact information
Jie Jiang: Chongqing University

Journal of Optimization Theory and Applications, 2024, vol. 203, issue 1, No 10, 227-255

Abstract: Abstract In this paper, we use the distributionally robust approach to study stochastic variational inequalities under the ambiguity of the true probability distribution, which is referred to as distributionally robust variational inequalities (DRVIs). First of all, we adopt a relaxed value function approach to relax the DRVI and obtain its relaxation counterpart. This is mainly motivated by the robust requirement in the modeling process as well as the possible calculation error in the numerical process. After that, we investigate qualitative convergence properties as the relaxation parameter tends to zero. Considering the perturbation of ambiguity sets, we further study the quantitative stability of the relaxation DRVI. Finally, when the ambiguity set is given by the general moment information, the discrete approximation of the relaxation DRVI is discussed.

Keywords: Stochastic variational inequality; Distributional robustness; Quantitative stability; Discretization; Rate of convergence; 90C15; 90C33 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10957-024-02497-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:203:y:2024:i:1:d:10.1007_s10957-024-02497-0

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-024-02497-0

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:203:y:2024:i:1:d:10.1007_s10957-024-02497-0