EconPapers    
Economics at your fingertips  
 

On the Basic Properties and the Structure of Power Cells

Elisabetta Allevi (), Juan Enrique Martinez-Legaz and Rossana Riccardi ()
Additional contact information
Elisabetta Allevi: Università degli Studi di Brescia
Rossana Riccardi: Università degli Studi di Brescia

Journal of Optimization Theory and Applications, 2024, vol. 203, issue 2, No 7, 1246-1262

Abstract: Abstract Given a set $$T\subseteq {\mathbb {R}}^{n}$$ T ⊆ R n and a nonnegative function r defined on T, we consider the power of $$x\in {\mathbb {R}}^{n}$$ x ∈ R n with respect to the sphere with center $$t\in T$$ t ∈ T and radius $$r\left( t\right) ,$$ r t , that is, $$ {p_r\left( x,t\right) }:=\left\| x-t\right\| ^{2}-r^{2}\left( t\right) ,$$ p r x , t : = x - t 2 - r 2 t , with $$\left\| \cdot \right\| $$ · denoting the Euclidean distance. The corresponding power cell of $$s\in T$$ s ∈ T is the set $$\begin{aligned} C_{T}^{r}(s):=\{x\in {\mathbb {R}}^{n}:{ p_r}(x,s)\le {p_r}(x,t),\ \text{ for } \text{ all }\ t\in T\}. \end{aligned}$$ C T r ( s ) : = { x ∈ R n : p r ( x , s ) ≤ p r ( x , t ) , for all t ∈ T } . We study the structure of such cells and investigate the assumptions on r that allow for generalizing known results on classical Voronoi cells.

Keywords: Power cell; Voronoi diagram; Structure of power cells; 52A20; 52C22; 52B11; 51M20 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10957-024-02435-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:203:y:2024:i:2:d:10.1007_s10957-024-02435-0

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-024-02435-0

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:203:y:2024:i:2:d:10.1007_s10957-024-02435-0