Isolated Calmness of Perturbation Mappings and Superlinear Convergence of Newton-Type Methods
Matúš Benko () and
Patrick Mehlitz ()
Additional contact information
Matúš Benko: Johann Radon Institute for Computational and Applied Mathematics
Patrick Mehlitz: Philipps-Universität Marburg
Journal of Optimization Theory and Applications, 2024, vol. 203, issue 2, No 20, 1587-1621
Abstract:
Abstract In this paper, we characterize Lipschitzian properties of different multiplier-free and multiplier-dependent perturbation mappings associated with the stationarity system of a so-called generalized nonlinear program popularized by Rockafellar. Special emphasis is put on the investigation of the isolated calmness property at and around a point. The latter is decisive for the locally fast convergence of the so-called semismooth* Newton-type method by Gfrerer and Outrata. Our central result is the characterization of the isolated calmness at a point of a multiplier-free perturbation mapping via a combination of an explicit condition and a rather mild assumption, automatically satisfied e.g. for standard nonlinear programs. Isolated calmness around a point is characterized analogously by a combination of two stronger conditions. These findings are then related to so-called criticality of Lagrange multipliers, as introduced by Izmailov and extended to generalized nonlinear programming by Mordukhovich and Sarabi. We derive a new sufficient condition (a characterization for some problem classes) of nonexistence of critical multipliers, which has been also used in the literature as an assumption to guarantee local fast convergence of Newton-, SQP-, or multiplier-penalty-type methods. The obtained insights about critical multipliers seem to complement the vast literature on the topic.
Keywords: Critical multipliers; Generalized nonlinear programming; Isolated calmness; Newton-like methods; Variational analysis; 49J52; 49J53; 90C30 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10957-024-02522-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:203:y:2024:i:2:d:10.1007_s10957-024-02522-2
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-024-02522-2
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().