EconPapers    
Economics at your fingertips  
 

Primal Subgradient Methods with Predefined Step Sizes

Yurii Nesterov ()
Additional contact information
Yurii Nesterov: Catholic University of Louvain (UCL)

Journal of Optimization Theory and Applications, 2024, vol. 203, issue 3, No 1, 2083-2115

Abstract: Abstract In this paper, we suggest a new framework for analyzing primal subgradient methods for nonsmooth convex optimization problems. We show that the classical step-size rules, based on normalization of subgradient, or on knowledge of the optimal value of the objective function, need corrections when they are applied to optimization problems with constraints. Their proper modifications allow a significant acceleration of these schemes when the objective function has favorable properties (smoothness, strong convexity). We show how the new methods can be used for solving optimization problems with functional constraints with a possibility to approximate the optimal Lagrange multipliers. One of our primal-dual methods works also for unbounded feasible set.

Keywords: Convex optimization; Nonsmooth optimization; Subgradient methods; Constrained problems; Optimal Lagrange multipliers (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10957-024-02456-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:203:y:2024:i:3:d:10.1007_s10957-024-02456-9

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-024-02456-9

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:203:y:2024:i:3:d:10.1007_s10957-024-02456-9