EconPapers    
Economics at your fingertips  
 

First-Order Methods for Nonnegative Trigonometric Matrix Polynomials

Daniel Cederberg ()
Additional contact information
Daniel Cederberg: Stanford University

Journal of Optimization Theory and Applications, 2025, vol. 204, issue 2, No 17, 28 pages

Abstract: Abstract Optimization problems over the cone of nonnegative trigonometric matrix polynomials are common in signal processing. Traditionally, those problems are formulated and solved as semidefinite programs (SDPs). However, the SDP formulation increases the dimension of the problem, resulting in large problems that are challenging to solve. In this paper we propose first-order methods that circumvent the SDP formulation and instead optimize directly within the space of trigonometric matrix polynomials. Our methods are based on a particular Bregman proximal operator. We apply our approach to two fundamental signal processing applications: to rectify a power spectrum that fails to be nonnegative and for graphical modeling of Gaussian time series. Numerical experiments demonstrate that our methods are orders of magnitude faster than an interior-point solver applied to the corresponding SDPs.

Keywords: First-order methods; Bregman proximal operator; Douglas–Rachford splitting; Generalized distances; 49J53; 49K99 (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10957-024-02581-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:204:y:2025:i:2:d:10.1007_s10957-024-02581-5

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1007/s10957-024-02581-5

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:joptap:v:204:y:2025:i:2:d:10.1007_s10957-024-02581-5