Global and Preference-Based Optimization with Mixed Variables Using Piecewise Affine Surrogates
Mengjia Zhu () and
Alberto Bemporad ()
Additional contact information
Mengjia Zhu: IMT School for Advanced Studies Lucca
Alberto Bemporad: IMT School for Advanced Studies Lucca
Journal of Optimization Theory and Applications, 2025, vol. 204, issue 2, No 11, 39 pages
Abstract:
Abstract Optimization problems involving mixed variables (i.e., variables of numerical and categorical nature) can be challenging to solve, especially in the presence of mixed-variable constraints. Moreover, when the objective function is the result of a complicated simulation or experiment, it may be expensive-to-evaluate. This paper proposes a novel surrogate-based global optimization algorithm to solve linearly constrained mixed-variable problems up to medium size (around 100 variables after encoding). The proposed approach is based on constructing a piecewise affine surrogate of the objective function over feasible samples. We assume the objective function is black-box and expensive-to-evaluate, while the linear constraints are quantifiable, unrelaxable, a priori known, and are cheap to evaluate. We introduce two types of exploration functions to efficiently search the feasible domain via mixed-integer linear programming solvers. We also provide a preference-based version of the algorithm designed for situations where only pairwise comparisons between samples can be acquired, while the underlying objective function to minimize remains unquantified. The two algorithms are evaluated on several unconstrained and constrained mixed-variable benchmark problems. The results show that, within a small number of required experiments/simulations, the proposed algorithms can often achieve better or comparable results than other existing methods.
Keywords: Derivative-free optimization; Preference-based optimization; Mixed-integer linear programming; Surrogate models; 62K20; 65K05 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10957-024-02596-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:204:y:2025:i:2:d:10.1007_s10957-024-02596-y
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-024-02596-y
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().