On second-order weak sharp minima of general nonconvex set-constrained optimization problems
Xiaoxiao Ma (),
Wei Ouyang (),
Jane J. Ye () and
Binbin Zhang ()
Additional contact information
Xiaoxiao Ma: University of Victoria
Wei Ouyang: Yunnan Normal University
Jane J. Ye: University of Victoria
Binbin Zhang: Kunming University of Science and Technology
Journal of Optimization Theory and Applications, 2025, vol. 207, issue 2, No 2, 24 pages
Abstract:
Abstract This paper explores local second-order weak sharp minima for a broad class of nonconvex optimization problems. We propose novel second-order optimality conditions formulated through the use of classical and lower generalized support functions. These results are based on asymptotic second-order tangent cones and outer second-order tangent sets. Specifically, our findings eliminate the necessity of assuming convexity in the constraint set and/or the outer second-order tangent set, or the nonemptiness of the outer second-order tangent set. Furthermore, unlike traditional approaches, our sufficient conditions do not rely on strong assumptions such as the uniform second-order regularity of the constraint set and the property of uniform approximation of the critical cones.
Keywords: Second-order weak sharp minima; Optimality condition; Support function; The lower generalized support function; Outer second-order tangent set; Asymptotic second-order tangent cone; 90C26; 90C46; 49J52; 49J53 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10957-025-02775-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:207:y:2025:i:2:d:10.1007_s10957-025-02775-5
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1007/s10957-025-02775-5
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().