EconPapers    
Economics at your fingertips  
 

Generalized Quasi-Variational Inequalities in Infinite-Dimensional Normed Spaces

P. Cubiotti

Journal of Optimization Theory and Applications, 1997, vol. 92, issue 3, No 2, 457-475

Abstract: Abstract In this paper, we deal with the following problem: given a real normed space E with topological dual E*, a closed convex set X⊑E, two multifunctions Γ:X→2X and $$\Phi :X \to 2^{E^* } $$ , find $$(\hat x,\hat \phi ) \in X \times E^* $$ such that $$\hat x \in \Gamma (\hat x),\hat \phi \in \Phi (\hat x),{\text{ and }}\mathop {{\text{sup}}}\limits_{y \in \Gamma (\hat x)} \left\langle {\hat \phi ,\hat x - y} \right\rangle \leqslant 0.$$ We extend to the above problem a result established by Ricceri for the case Γ(x)≡X, where in particular the multifunction Φ is required only to satisfy the following very general assumption: each set Φ(x) is nonempty, convex, and weakly-star compact, and for each y∈X−:X the set $$\{ x \in X:\inf _{\phi \in \Phi (x)} \left\langle {\phi ,y} \right\rangle \leqslant 0\} $$ is compactly closed. Our result also gives a partial affirmative answer to a conjecture raised by Ricceri himself.

Keywords: Generalized quasi-variational inequalities; generalized variational inequalities; lower semicontinuity; Hausdorff lower semicontinuity; Lipschitzian multifunctions (search for similar items in EconPapers)
Date: 1997
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1023/A:1022647221266 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:92:y:1997:i:3:d:10.1023_a:1022647221266

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1023/A:1022647221266

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:92:y:1997:i:3:d:10.1023_a:1022647221266