Global Method for Monotone Variational Inequality Problems with Inequality Constraints
J. M. Peng
Additional contact information
J. M. Peng: Academia Sinica
Journal of Optimization Theory and Applications, 1997, vol. 95, issue 2, No 10, 419-430
Abstract:
Abstract We consider optimization methods for monotone variational inequality problems with nonlinear inequality constraints. First, we study the mixed complementarity problem based on the original problem. Then, a merit function for the mixed complementarity problem is proposed, and some desirable properties of the merit function are obtained. Through the merit function, the original variational inequality problem is reformulated as simple bounded minimization. Under certain assumptions, we show that any stationary point of the optimization problem is a solution of the problem considered. Finally, we propose a descent method for the variational inequality problem and prove its global convergence.
Keywords: Variational inequality problems; mixed complementarity problems; optimization methods (search for similar items in EconPapers)
Date: 1997
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1023/A:1022695523877 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:95:y:1997:i:2:d:10.1023_a:1022695523877
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1023/A:1022695523877
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().