Coupling the Proximal Point Algorithm with Approximation Methods
R. Cominetti
Additional contact information
R. Cominetti: Universidad de Chile
Journal of Optimization Theory and Applications, 1997, vol. 95, issue 3, No 6, 600 pages
Abstract:
Abstract We study the convergence of a diagonal process for minimizing a closed proper convex function f, in which a proximal point iteration is applied to a sequence of functions approximating f. We prove that, when the approximation is sufficiently fast, and also when it is sufficiently slow, the sequence generated by the method converges toward a minimizer of f. Comparison to previous work is provided through examples in penalty methods for linear programming and Tikhonov regularization.
Keywords: Proximal point algorithm; steepest descent; penalty methods; viscosity methods; convex optimization (search for similar items in EconPapers)
Date: 1997
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1023/A:1022621905645 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:95:y:1997:i:3:d:10.1023_a:1022621905645
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1023/A:1022621905645
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().