Optimal Trajectories for Earth-to-Mars Flight
A. Miele and
T. Wang
Additional contact information
A. Miele: Rice University
T. Wang: Rice University
Journal of Optimization Theory and Applications, 1997, vol. 95, issue 3, No 1, 467-499
Abstract:
Abstract This paper deals with the optimal transfer of a spacecraft from a low Earth orbit (LEO) to a low Mars orbit (LMO). The transfer problem is formulated via a restricted four-body model in that the spacecraft is considered subject to the gravitational fields of Earth, Mars, and Sun along the entire trajectory. This is done to achieve increased accuracy with respect to the method of patched conics. The optimal transfer problem is solved via the sequential gradient-restoration algorithm employed in conjunction with a variable-stepsize integration technique to overcome numerical difficulties due to large changes in the gravitational field near Earth and near Mars. The optimization criterion is the total characteristic velocity, namely, the sum of the velocity impulses at LEO and LMO. The major parameters are four: velocity impulse at launch, spacecraft vs. Earth phase angle at launch, planetary Mars/Earth phase angle difference at launch, and transfer time. These parameters must be determined so that ΔV is minimized subject to tangential departure from circular velocity at LEO and tangential arrival to circular velocity at LMO. For given LEO and LMO radii, a departure window can be generated by changing the planetary Mars/Earth phase angle difference at launch, hence changing the departure date, and then reoptimizing the transfer. This results in a one-parameter family of suboptimal transfers, characterized by large variations of the spacecraft vs. Earth phase angle at launch, but relatively small variations in transfer time and total characteristic velocity. For given LEO radius, an arrival window can be generated by changing the LMO radius and then recomputing the optimal transfer. This leads to a one-parameter family of optimal transfers, characterized by small variations of launch conditions, transfer time, and total characteristic velocity, a result which has important guidance implications. Among the members of the above one-parameter family, there is an optimum–optimorum trajectory with the smallest characteristic velocity. This occurs when the radius of the Mars orbit is such that the associated period is slightly less than one-half Mars day.
Keywords: Flight mechanics; astrodynamics; celestial mechanics; Earth-to-Mars missions; departure window; arrival window; optimization; sequential gradient-restoration algorithm (search for similar items in EconPapers)
Date: 1997
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1023/A:1022661519758 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:95:y:1997:i:3:d:10.1023_a:1022661519758
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1023/A:1022661519758
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().