Adaptive Inverse Control Using a Gradient-Projection Optimization Technique
G. Tao
Additional contact information
G. Tao: University of Virginia
Journal of Optimization Theory and Applications, 1997, vol. 95, issue 3, No 11, 677-691
Abstract:
Abstract As an application of an optimization technique, a gradient-projection method is employed to derive an adaptive algorithm for updating the parameters of an inverse which is designed to cancel the effects of actuator uncertainties in a control system. The actuator uncertainty is parametrized by a set of unknown parameters which belong to a parameter region. A desirable inverse is implemented with adaptive estimates of the actuator parameters. Minimizing an estimation error, a gradient algorithm is used to update such parameter estimates. To ensure that the parameter estimates also belong to the parameter region, the adaptive update law is designed with parameter projection. With such an adaptive inverse, desired control system performance can be achieved despite the presence of the actuator uncertainties.
Keywords: Actuator uncertainty; adaptive inverse; gradient method; parameter projection (search for similar items in EconPapers)
Date: 1997
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1023/A:1022682124301 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:95:y:1997:i:3:d:10.1023_a:1022682124301
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1023/A:1022682124301
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().