Numerical Experience with a Class of Self-Scaling Quasi-Newton Algorithms
M. Al-Baali
Additional contact information
M. Al-Baali: UAE University
Journal of Optimization Theory and Applications, 1998, vol. 96, issue 3, No 3, 533-553
Abstract:
Abstract Self-scaling quasi-Newton methods for unconstrained optimization depend upon updating the Hessian approximation by a formula which depends on two parameters (say, τ and θ) such that τ = 1, θ = 0, and θ = 1 yield the unscaled Broyden family, the BFGS update, and the DFP update, respectively. In previous work, conditions were obtained on these parameters that imply global and superlinear convergence for self-scaling methods on convex objective functions. This paper discusses the practical performance of several new algorithms designed to satisfy these conditions.
Keywords: Unconstrained optimization; quasi-Newton methods; inexact line searches; global and superlinear convergence; Broyden family; self-scaling methods (search for similar items in EconPapers)
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1023/A:1022608410710 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:96:y:1998:i:3:d:10.1023_a:1022608410710
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1023/A:1022608410710
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().