Connectedness of the Efficient Set for Strictly Quasiconcave Sets
J. Benoist
Additional contact information
J. Benoist: Limoges University
Journal of Optimization Theory and Applications, 1998, vol. 96, issue 3, No 7, 627-654
Abstract:
Abstract Given a closed subset X in % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaW% baaSqabeaacaWGUbaaaaaa!387D! , we show the connectedness of its efficient points or nondominated points when X is sequentially strictly quasiconcave. In the particular case of a maximization problem with n continuous and strictly quasiconcave objective functions on a compact convex feasible region of % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaW% baaSqabeaacaWGWbaaaaaa!387F! , we deduce the connectedness of the efficient frontier of the problem. This work solves the open problem of the efficient frontier for strictly quasiconcave vector maximization problems.
Keywords: Strictly quasiconvex sets; strictly quasiconvex functions; connected sets; efficient points; vector optimization (search for similar items in EconPapers)
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://link.springer.com/10.1023/A:1022616612527 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:96:y:1998:i:3:d:10.1023_a:1022616612527
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2
DOI: 10.1023/A:1022616612527
Access Statistics for this article
Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull
More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().