EconPapers    
Economics at your fingertips  
 

Connectedness of the Efficient Set for Strictly Quasiconcave Sets

J. Benoist
Additional contact information
J. Benoist: Limoges University

Journal of Optimization Theory and Applications, 1998, vol. 96, issue 3, No 7, 627-654

Abstract: Abstract Given a closed subset X in % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaW% baaSqabeaacaWGUbaaaaaa!387D! , we show the connectedness of its efficient points or nondominated points when X is sequentially strictly quasiconcave. In the particular case of a maximization problem with n continuous and strictly quasiconcave objective functions on a compact convex feasible region of % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaW% baaSqabeaacaWGWbaaaaaa!387F! , we deduce the connectedness of the efficient frontier of the problem. This work solves the open problem of the efficient frontier for strictly quasiconcave vector maximization problems.

Keywords: Strictly quasiconvex sets; strictly quasiconvex functions; connected sets; efficient points; vector optimization (search for similar items in EconPapers)
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://link.springer.com/10.1023/A:1022616612527 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joptap:v:96:y:1998:i:3:d:10.1023_a:1022616612527

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10957/PS2

DOI: 10.1023/A:1022616612527

Access Statistics for this article

Journal of Optimization Theory and Applications is currently edited by Franco Giannessi and David G. Hull

More articles in Journal of Optimization Theory and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joptap:v:96:y:1998:i:3:d:10.1023_a:1022616612527